
First Steps with Score Flash
After you have downloaded and imported Score Flash to 
your project, you will see three main folders:
• Editor: Contains NarayanaGames/Common and 

NarayanaGames/ScoreFlash
• Plugins: Contains NarayanaGames/Common and 

NarayanaGames/ScoreFlash
• Xamples-ScoreFlash: Contains a lot of example scenes, 

skins, fonts and plenty of code

The reason the core files are stored in Plugins is so that 
you can immediately use them from Boo and JavaScript 
(as Score Flash is written in C#, that works automatically). 
The Common folders contain generally useful classes, and ScoreFlash obviously 
contains everything specific to Score Flash. All examples are contained in a separate 
folder that you can delete to clean up your project once you are familiar with Score 
Flash.

The files you’ll work with are highlighted in green in the screenshot above:
• ScoreFlash class: This implements the main features of ScoreFlash.
• ScoreFlash prefab: A prefab you can simple pull

into your scene to get started
• ScoreFlashFollow3D: A component you can attach

to any game object to have messages pushed on 
the screen via Score Flash follow that game object

• ScoreFlashManager: A component you can use to 
manage multiple instances of ScoreFlash in a single 
scene

Working with a Single Instance of ScoreFlash
In most cases, you’ll be fine using a single instance of ScoreFlash. This 
gives you one point of setting up the configuration and a very easy to 
use interface for any of your messages. You can either pull the 
ScoreFlash prefab into your scene, or use Unity’s menu Game Object / 
Create Other / Score Flash.



Once you have a ScoreFlash instance in your scene, you 
can hit play in the editor, open the Testing foldout in 
ScoreFlash’s custom inspector, check Autogenerate 
Messages? and see ScoreFlash put out messages in its 
current configuration.

If you have Keep Changes after Player? checked, ScoreFlash 
will keep any changes you make while playing, even when 
you stop playing. That way, it’s very easy to set up Score 
Flash. Store immediately? lets you control whether the 
changes should be stored immediately, or whether you’d 
rather click a button to store the changes after you 
stopped playing. Notice that these two checkboxes are 
only visible while playing.

The best way to learn working with ScoreFlash is by 
playing with its settings. And as the testing mode is fairly important to get 
everything up and running from an artist’s point of view, this is where I’d start:

Usual Delay Between Msgs lets you control how many seconds ScoreFlash should 
wait between normal messages. If you have Include Message Burst checked, after a 
few messages with the regular interval, there’s a few sent in a “burst” (very quickly). 
This is for setting up Readability and Performance Tweaks and lets you see what 
happens when messages are being spammed. Include Long Messages, on the other 
hand, includes a couple of very long messages every once in a while. Again, this is 
useful for simulating certain kinds of messages to make sure ScoreFlash handles 
them the way you wish.

Force High Density simulates that you are on a high density display (e.g. Retina 
display of iPhone 4 or iPad 3). ScoreFlash supports using two skins, one for 
standard density, and another one for high density - this is for testing that feature 
in the Unity editor.

If you check Render Debug Information, ScoreFlash will render some internal values 
instead of the messages you post. Finally, instead of autogenerating messages (or 
in addition to autogenerated messages), you can post our own specific messages at 
any time, using the textbox and Show Message button.



Setting up your Score Flash instance
Before setting up your new instance of Score Flash, you might want to make 
yourself familiar with the different foldouts that the custom inspector provides:

• Main Layout: This foldout has several general parameters, like how messages are 
being rendered, skins or fonts and the screen alignment for messages sent via the 
Push(...) or PushLocal(...) methods. Usually, that’s the first thing you’ll want to set 
up. Rendering lets you control with which method messages are being rendered: 
UnityGUI_GUISkin uses a GUISkin to determine the look. With UnityGUI_Font, you 
can simply use fonts. CustomRenderer lets you use one of the custom renders so 
you can also use NGUI or EZ GUI, if you have those packages in your project. 
When using UnityGUI_GUISkin, you can also define which GUIStyle you want to use 
for ScoreFlash. Available GUIStyles lets you conveniently select one of the custom 
styles available in the skin you have assigned, or even default styles if Include 
default styles is checked.

• Readability and Performance Tweaks: This has several settings to optimize 
readability and performance. Usually, you’ll want to do this as a last step after 
everything else has been set up, or even while play-testing your game.

• Colors: Provides various ways of handling colors. Please be aware that when you 
use Push(...), PushLocal(...), PushScreen(...) or PushWorld(...) with a Color 
parameter, these settings will be ignore (except for the alpha-fading).

• Advanced: When you check Ensure Singleton?, ScoreFlash will make sure that it’s 
not destroyed when a new scene is loaded. This is the default. However, if you 
want to have different configurations for different scenes, you need to put a 
ScoreFlash instance into each scene, and you have to make sure to uncheck this!

Finally, the actual animation is controlled via three foldouts for each phase of the 
animation:
1. Fade In Phase: The initial phase, when the message appears on screen.
2. Reading Phase: The phase where the message should be readable by the 

player.
3. Fade Out Phase: The final phase, where the message disappears from the 

screen.



Setting up Colors and the Three Phases
If you prefer learning through a video, you should watch the tutorial
Score Flash - Working with Colors: http://www.youtube.com/watch?v=fy-Oo6dg6kA 
which explains this area in some detail.

First, you should decide which Color Selection Mode you 
want to use for this ScoreFlash instance. The Color Selection 
Mode determines how colors are handled by ScoreFlash - 
unless you are passing a Color parameter to the method 
you use for pushing your messages (in this case, these 
settings are mostly ignored, alpha being the exception).

You can find detailed descriptions of the various color selection modes in the API 
documentation of ScoreFlash.ColorControl Enumeration:
http://narayana-games.net/static/docs/assetstore/ScoreFlash/html/T_ScoreFlash_ColorControl.htm 

Color Modes: Sequence and Random
Basically, Sequence and Random let you define a list of colors right here and 
ScoreFlash will then pick a color according to your setting, and cycle through the 
different alpha values defined below, as you can see in the screenshot.

Notice that you can also define an alpha value for each of the colors in the list. The 
way ScoreFlash uses those is by multiplying with the current value from the 
animation (based on the sliders for Fade In, Read Start, Read End and Fade Out).

In other words, if you want some of the 
messages to appear transparent, while others 
are opaque, simply define that in the list of 
colors, and keep the alpha sliders the way 
they are. Obviously, most of the time you’ll 
want “fade in” (starts with 0, goes to 1), and 
“fade out” (starts with 1, ends with 0); but you 
could also make message appear 
immediately or whatever you feel looks best 
for your game.

http://www.youtube.com/watch?v=fy-Oo6dg6kA
http://www.youtube.com/watch?v=fy-Oo6dg6kA
http://narayana-games.net/static/docs/assetstore/ScoreFlash/html/T_ScoreFlash_ColorControl.htm
http://narayana-games.net/static/docs/assetstore/ScoreFlash/html/T_ScoreFlash_ColorControl.htm


These settings are really best learned by doing - that’s what testing mode is there 
for! Tweak the settings until you feel it looks the way you want! And in no time, 
you’ll get the hang of it!

Color Mode: UseColorFromSkin
This is particularly useful, if you want to use ScoreFlash with your own GUIStyles. 
ScoreFlash will use the colors defined in the style (either from the GUISkin you have 
assigned to ScoreFlash, or from the GUIStyle that you pass into the Push-method 
you are using to show your messages).

You still get the alpha sliders so that you can define an alpha value that the alpha 
value from the color from the GUIStyle is multiplied with based on the animation.

Color Mode: FadePhases
This is the standard and the nice 
thing about it is that it lets you 
fade from one color to the other 
during the animation. With this 
setting, you can define a different 
color for each phase. In fact, the 
reading phase lets you define two 
colors (one for when it starts, one 
for when it ends).

Setting up the Three Phases: 
Fade In, Reading, Fade Out
Again, the best way to learn this 
is by tweaking the values while 
ScoreFlash is generating 
messages in play mode. You 
should see the effect with each 
new message that is being 
created.

For each phase, you can define 
how long it should take in 
seconds. That’s Fade In Time, Read 
Time, Fade Out Time.



For the reading phase, there’s a Read 
Time Length Optimization foldout. This 
lets you define a Min Char Count to Add 
Time - in other words: How many 
characters does a message need to 
have before the amount defined in Add 
to time if longer is added to Read Time? 
Obviously, the player will need more 
time to read a longer message than a 
shorter message. That’s what this 
feature is there for and it shows you 
how much time the player has to read 
messages with different lengths.

Then, for each phase, if you have Color Mode: FadePhases active, you can define 
colors. In the other Color Selection Modes, you only see the animation curves for the 
colors which in that case is used to drive the alpha channel from one value to the 
next (click a curve in the inspector to open the animation curve editor). 

Using these animation curves gives you quite a 
bit of flexibility - like, it’s very easy to set up 
easing or bumping or even alternating back and 
forth between the two colors of the current / 
previous or previous / next phase (or read start 
and read end, while in the reading phase). You 
should avoid going below 0, though, and also 
you should have your curve in the time between 
0 and 1!

The Fade In Phase has an Initial Offset Y, which lets the message move in either from 
above (negative values) or below (positive values). Again, this animation is 
controlled via an animation curve, so it’s very easy to add easing or overshooting by 
simply editing the curve the way you wish.

For the Reading and Fade Out Phases, this offset is replaced with a velocity that is 
animated towards using the animation curve, so that the message either Floats Up 
(positive value) or down (negative values). The reason we have an offset for the 
Fade In Phase and velocities for Reading and Fade Out is because the Fade In Phase 



always has a well defined duration, so it’s totally predictable. Reading and Fade Out, 
however, might change duration according to needs (e.g. when many messages are 
being spammed, the times are shortened).

This is controlled through settings under Readability and Performance Tweaks: Max 
Simultaneuous Messages defines how many 
messages ScoreFlash shows before letting 
messages “age quicker”. In other words: Their 
Reading Phase and Fade Out Phase will 
become shorter to avoid having too many 
messages on screen at the same time (which 
might degrade performance, especially when 
using UnityGUI and outlines on mobile).

Another noteworthy readability optimization setting is Min Distance between Msgs 
and Spread Speed. This defines how much distance ScoreFlash tries to keep 
between two messages so that they don’t overlap, and how intensely it enforces 
this distance.

To optimize these settings in Readability and Performance Tweaks, it’s a good idea 
to set the Usual Delay Between Msgs in Testing to a very low value (e.g. 0.3) and check 
Include Message Burst. With a Spread Speed of 10, you’ll usually have the messages 
not overlap each other. With 3, there may be some overlaps; but in the end, you 
really need to tweak this to work smoothly with your specific game.

Min Distance between Msgs and Spread Speed makes messages go up to avoid 
overlaps with positive values, and down with negative values. To avoid awkward 
effects, this should have the same sign as Read End Float Up Velocity and Final Float 
Up Velocity. In fact, you’ll get a warning and a button to fix this if the one is negative 
and the other positive.

Each phase also has a Scale, and again you can control via animation curves how 
the Initial Scale (Fade In Phase) is animated towards 1 (at the beginning of the 
Reading Phase), and from there to Scale at Read End (Reading Phase). And finally from 
there to the Final Scale (Fade Out Phase).

Last but not least, Fade Out Phase offers Fade Out Initial Rotation Speed and Rotation 
Acceleration so let the message rotate while fading out.



Pushing Messages using the ScoreFlash API
Once you have set up ScoreFlash the way you like it, you should make sure to 
switch off Autogenerate Messages? in the Testing foldout. Then it’s coding time! 
Review the example code that you’ll find in the folder Xamples-ScoreFlash. Also, you 
should check out the API documentation of the ScoreFlash class, which contains 
several common usage examples:

http://narayana-games.net/static/docs/assetstore/ScoreFlash/html/T_ScoreFlash.htm 

To see all possible ways of pushing messages and get a better understanding of 
what PushLocal(...), PushScreen(...) and PushWorld(...) means, be sure to check out 
the API documentation of IScoreFlash:

http://narayana-games.net/static/docs/assetstore/ScoreFlash/html/
AllMembers_T_NarayanaGames_ScoreFlashComponent_IScoreFlash.htm 

Using Multiple Instances of ScoreFlash - 
ScoreFlashManager
While in most cases, a single instance of ScoreFlash is enough, you might want to 
use different instances of ScoreFlash for different kinds of messages in a single 
scene. To do this, you need to add a ScoreFlashManager to your scene (Unity menu: 
GameObject / Create Other / Score Flash Manager).

It is important that all instances of ScoreFlash of a scene are collected below the 
ScoreFlashManager. To easily accomplish this, the ScoreFlashManager custom 
inspector has a button Pull for each instance of ScoreFlash that is not below 
ScoreFlashManager (if you don’t see it - make the inspector wider!)

http://narayana-games.net/static/docs/assetstore/ScoreFlash/html/T_ScoreFlash.htm
http://narayana-games.net/static/docs/assetstore/ScoreFlash/html/T_ScoreFlash.htm
http://narayana-games.net/static/docs/assetstore/ScoreFlash/html/AllMembers_T_NarayanaGames_ScoreFlashComponent_IScoreFlash.htm
http://narayana-games.net/static/docs/assetstore/ScoreFlash/html/AllMembers_T_NarayanaGames_ScoreFlashComponent_IScoreFlash.htm
http://narayana-games.net/static/docs/assetstore/ScoreFlash/html/AllMembers_T_NarayanaGames_ScoreFlashComponent_IScoreFlash.htm
http://narayana-games.net/static/docs/assetstore/ScoreFlash/html/AllMembers_T_NarayanaGames_ScoreFlashComponent_IScoreFlash.htm


The ScoreFlashManager also assures that 
your ScoreFlash instances have unique 
names; if two instances share the same 
name, you get an error message and an 
easy way to fix it.

Again, you can use the testing mode to 
configure all of your ScoreFlash instances 
the way you want, just like you would with a single instance. You can use the 
ScoreFlashManager to Ping (highlight) specific instances, and you can conveniently 
duplicate instances if you want to set two ScoreFlash instances up in a very similar 
way.

Finally, when it comes to coding, you may appreciate the Copy Ref button. What this 
does is copy the code to get the generic reference to that instance. So clicking the 
button that’s highlighted in green on the screenshot, will give you the following 
code that you can easily paste into your scripts:

ScoreFlashManager.Get("SF_Chat")

And then, you can go create something like this - or much better:


